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SUMMARY

This paper studied on magnetohydrodynamics flow and heat transfer outside a stretching cylinder.
Momentum and energy equations are reduced using similarity transformation and converted into a system
of ordinary differential equations which are solved analytically by the homotopy analysis method. The
effects of the parameters involved, namely the magnetic parameter (M), Prandtl number (Pr) and Reynolds
number (Re) on the velocity and temperature fields are investigated.

The obtained results are valid for the whole solutions’ domain with high accuracy. These methods
can be easily extended to other linear and nonlinear equations and so can be found widely applicable in
engineering and sciences. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Some industrial equipments such as magnetohydrodynamic (MHD) generator, pumps, bearings
and boundary layer control are affected by the interaction between the electrically conducting
fluid and a magnetic field. The works of many investigators have been studied in relation to these
applications.

One of the basic and important problems in this area is the hydromagnetic behavior of boundary
layers along fixed or moving surfaces in the presence of a transverse magnetic field. MHD boundary
layers are observed in various technical systems employing liquid metal and plasma flow transverse
of magnetic fields [1].
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Recently, many researchers have studied the influences of electrically conducting fluids, such as
liquid metals, water mixed with a little acid and others in the presence of a magnetic field on the
flow and heat transfer of a viscous and incompressible fluid past a moving surface or a stretching
plate in a quiescent fluid. Pavlov [2] was one of the first pioneers in this study. After Pavlov the
flow past a moving flat plate or a stretching sheet in the presence of a transverse magnetic field
convert an interesting subject that an amount of literature has been generated on this problem
[3–13]. Examples of such technological applications are hot rolling, wire drawing, glass–fibre and
paper production, drawing of plastic films, metal and polymer extrusion, metal spinning, liquid
films in condensation process, etc. [13]. In all these cases, it is important to investigate cooling
and heat transfer for the improvement of the final products. Because many properties of final
products depend to a large extent on the skin friction coefficient and on the surface heat transfer
rate. However, to the best of our knowledge, only Wang [14] has studied the steady flow of a
viscous and incompressible fluid outside of a stretching hollow cylinder in an ambient fluid at
rest. The problem is governed by a third-order nonlinear ordinary differential equation that leads
to an exact similarity solutions of the Navier–Stokes equations. Motivated by the works of the
above-mentioned authors [3–16], the present study considers the flow and heat transfer of a viscous
and incompressible electrically conducting fluid outside of a stretching cylinder in the presence
of a constant transverse magnetic field. The applications include fibre coating, metal spinning,
wire drawing, flow meter design, piping and casting systems, etc. The problem is formulated in
such a manner that the partial differential equations governing the flow and temperature fields are
reduced to ordinary differential equations, which are solved analytically using homotopy analysis
method (HAM).

These scientific problems are modeled by ordinary or partial differential equations. These equa-
tions should be solved using special techniques, because in most cases, analytical solutions cannot
be applied to these problems. In recent years, much attention has been devoted to newly devel-
oped methods to construct an analytical solution of these equations; such methods include the
Adomian decomposition method [17], Homotopy Perturbation Method [18, 19], Variational Itera-
tion Method [20] and Perturbation techniques. Perturbation techniques are too strongly dependent
upon the so-called ‘small parameters’ [21]. Thus, it is worthwhile to develop some new analytic
techniques independent of small parameters. One of these techniques is HAM, which was intro-
duced by Liao [22–28]. This method has been successfully applied to solve many types of nonlinear
problems [29–38].

The problem under discussion is depicted in Figure 1.

2. THE BASIC IDEA OF HOMOTOPY ANALYSIS METHOD

Let us assume the following nonlinear differential equation in the form of:

N [u(�)]=0 (1)

where N is a nonlinear operator, � is an independent variable and u(�) is the solution of equation.
We define the function, �(�, p), as follows:

lim�(�, p)
p→0

=u0(�) (2)
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Figure 1. Schematic figure of the problem under discussion.

where p∈[0,1] and u0(�) is the initial guess which satisfies the initial or boundary condition and if
lim�(�, p)

p→1
=u(�) (3)

and using the generalized homotopy method, Liao’s so-called zero-order deformation equation
will be:

(1− p)L[�(�, p)−u0(�)]= ph̄H(�)N [�(�, p)] (4)

where h̄ is the auxiliary parameter which helps us increase the results’ convergence, H(�) is the
auxiliary function and L is the linear operator. It should be noted that there is a great freedom
to choose the auxiliary parameter h̄, the auxiliary function H(�), the initial guess u0(�) and the
auxiliary linear operator L . This freedom plays an important role in establishing the keystone of
validity and flexibility of HAM as shown in this paper.

Thus, when p increases from 0 to 1 the solution �(�, p) changes between the initial guess u0(�)
and the solution u(�). The Taylor series expansion of �(�, p) with respect to p is:

�(�, p)=u0(�)+
+∞∑
m=1

um(�)pm (5)

and

u[m]
0 (�)= �m�(�; p)

�pm

∣∣∣∣
p=0

(6)

where u[m]
0 (�) for brevity is called the mth order of deformation derivation which reads:

um(�)= u[m]
o

m! = 1

m!
�m�(�; p)

�pm

∣∣∣∣
p=0

(7)
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It is clear that if the auxiliary parameter is h̄=−1 and the auxiliary function is determined to be
H(�)=1, Equation (1) will be:

(1− p)L[�(�, p)−u0(�)]+ p(�)N [�(�, p)]=0 (8)

This statement is commonly used in the HPM procedure. In deed, in HPM we solve the nonlinear
differential equation by separating any Taylor expansion term. Now we define the vector of:

um ={u1,u2,u3, . . . ,un} (9)

According to the definition in Equation (7), the governing equation and the corresponding initial
condition of um(�) can be deduced from zero-order deformation equation (1). Differentiating
Equation (1) for m times with respect to the embedding parameter p and setting p=0 and finally
dividing by m!, we will have the so-called mth-order deformation equation in the form:

L[um(�)−�mum−1(�)]= h̄H(�)R(um−1) (10)

where

Rm(um−1)= 1

(m−1)!
�m−1N [�(�; p)]

�pm−1

∣∣∣∣∣
p=0

(10a)

and

�m =
{
0, m�1

1, m>1
(10b)

Hence, by applying inverse linear operator to both sides of the linear equation, Equation (1), we can
easily solve the equation and compute the generation constant by applying the initial or boundary
condition.

3. DESCRIPTION OF THE PROBLEM

Steady laminar flow of an incompressible electrically conducting fluid (with electrical
conductivity �) caused by a stretching tube of radius a in the axial direction in a fluid at rest is
shown in Figure 1, where z is the axis along the tube length and r is the axis in the radial direction.
The surface of the tube is at constant temperature Tw and the ambient fluid temperature is T1,
where Tw>T1. Uniform magnetic field of intensity B0 acts in the radial direction and the effect
of the induced magnetic field is negligible, which is valid when the magnetic Reynolds number
is small. The viscous dissipation, Ohmic heating, and Hall effects are neglected as they are also
assumed to be small. Under these assumptions, the governing equations are [14, 15]

�
�z

(rw)+ �
�r

(ru)=0 (11)

w
�w
�z

+u
�w

�r
=v

(
�2w
�r2

+ 1

r

�w

�r

)
− �B2

0

�
w (12)
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w
�u
�z

+u
�u
�r

=−1

�

�P
�r

+v

(
�2u
�r2

+ 1

r

�u
�r

− u

r2

)
(13)

w
�T
�z

+u
�T
�r

=�

(
�2T
�r2

+ 1

r

�T
�r

)
(14)

subject to the boundary condition

u=0, w=ww, T =Tw at r =a

w→0, T →T∞ as r →∞ (15)

where u and w are the velocity components along the r and z directions, respectively, and ww =2c z
where c is a constant with positive value. Further �, �, T , and � are, respectively, the kinematic
viscosity, fluid density, fluid temperature, and thermal diffusivity.

Following Wang [14] we take the similarity transformation

	 =
( r
a

)2
, u=−ca

f (	)√
	

w = 2c f ′(	)z, 
(	)= T −T∞
Tw −T∞

(16)

where prime denotes differentiation with respect to 	. Substituting Equation (16) into Equations
(12) and (15), we get the following ordinary differential equations:

Re( f ′2− f f ′′)=	 f ′′′+ f ′′−M f ′ (17)

	
′′+(1+Re Pr f )
′ =0 (18)

where Re=ca2/(2�) is the Reynolds number and M=�B2
0a

2/4�� is the magnetic parameter. The
boundary conditions in Equation (15) become

f (1) = 0, f ′(1)=1, 
(1)=1

f ′(∞) → 0, 
(∞)→0
(19)

The pressure can now be determined from Equation (13) in the form

P−P∞
rvc

=− Re

	
f 2(	)−2 f ′(	) (20)

The physical quantities of interest are the skin friction coefficient and the Nusselt number, which
are defined as

C f = �w

�w2
w/2

, Nu= aqw

k(Tw −T∞)
(21)

with k being the thermal conductivity. Further, �w and qw are the skin friction and the heat transfer
from the surface of the tube, respectively, and they are given by

�w =�

(
�w

�r

)
r=a

, qw =−k

(
�T
�r

)
r=a

(22)
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Using Equation (16), we get

C f (Rez/a)= f ′′(1), Nu=−2
′(1) (23)

4. SOLUTION USING HOMOTOPY ANALYSIS METHOD

In this section, we employ HAM to solve Equations (17) and (18) subject to boundary conditions
in Equation (19). For solutions, we choose the initial guesses and auxiliary linear operators in the
following form:

f0(	)=1−ee−	, 
0(	)=ee−	 (24)

As the initial guess approximation for f (	) and 
(	)

L1(F)= f ′′′− f ′′, L2(
)=
′′−
′ (25)

As the auxiliary linear operator which has the property:

L(c1	+c2+c3e
−	)=0, L(c4+c5e

−	)=0 (26)

and c1–c5 are constants. Let p∈[0,1] denotes the embedding parameter and h̄ indicates non-zero
auxiliary parameters. Then, we construct the following equations:

4.1. Zeroth-order deformation equations

(1− p)L1[ f (	; p)− f0(	)]= ph̄1N1[ f (	; p)] (27)

(1− p)L2[
(	; p)−
0(	)]= ph̄2N2[
(	; p)] (28)

f (1; p)=0, f ′(1; p)=1, f ′(∞; p)=0 (29)


(1; p)=1, 
(∞; p)=0 (30)

N1[ f (	; p)] = 	
d3 f (	; p)

d	3
+ d2 f (	; p)

d	2
−M

d f (	; p)
d	

−Re

((
d f (	; p)

d	

)2

− f (	; p)d
2 f (	; p)
d	2

)
=0 (31)

N2[
(	; p)]=	
d2
(	; p)

d	2
+(1+RePr f (	; p))d
(	; p)

d	
=0 (32)

For p=0 and p=1:

f (	;0)= f0(	), f (	;1)= f (	), 
(	;0)=
0(	), 
(	;1)=
(	) (33)
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When p increases from 0 to 1 then f (	; p) vary from f0(	) to f (	) and 
(	; p) vary from

0(	) to 
(	). By Taylor’s theorem and using Equation (33), we can write:

f (	; p)= f0(	)+
∞∑

m−1
fm(	)pm, fm(	)= 1

m!
�m( f (	; p))

�pm
(34)


(	; p)=
0(	)+
∞∑

m−1

m(	)pm, 
m(	)= 1

m!
�m(
(	; p))

�pm
(35)

For simplicity, we suppose h̄1= h̄2= h̄, in which h̄ is chosen in such a way that these two series
are convergent at p=1. Therefore, we have through Equations (34) and (35):

f (	)= f0(	)+
∞∑

m−1
fm(	) (36)


(	)=
0(	)+
∞∑

m−1

m(	) (37)

4.2. mth-order deformation equations

L[ fm(	)−�m fm−1(	)]= h̄ R f
m(	) (38)

fm(1)= f ′
m(1)= f ′

m(∞)=0 (39)

R f
m(	)=	 f ′′′

m−1− f ′′
m−1+M f ′

m−1+
m−1∑
n=0

Re( fm−1−n f
′′
n − f ′

m−1−n f
′
n) (40)

L[
m(	)−�m
m−1(	)]= h̄ R

m(	) (41)


m(1)=
m(∞)=0 (42)

R

m(	)=	
′′

m−1+
′
m−1+

m−1∑
n=0

RePr fm−1−n

′
n (43)

�m =
{
0, m�1

1, m>1
(44)

To obtain the solutions of Equations (17) and (18) subject to boundary conditions (19) up to first
few orders of approximations the series solution is found to be:

fm(	)=am,0
0 +

m+1∑
n=1

e−n	
2(m+1−n)∑

k=0
	kam,n

k (45)


m(	)=bm,0
0 +

m+1∑
n=1

e−n	
2(m+1−n)∑

k=0
	kbm,n

k (46)

Substituting Equations (45)–(46) into Equations (38)–(43), the recurrence formulae for the coef-
ficient am,n

k and bm,n
k of Fm(	) and 
m(	) are obtained, respectively, for m�1,0�n�m+1 and
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0�k�2(m+1−n) as:

am,0
0 = �ma

m−1,0
0 −

2m−1∑
r=0

[
�1m,1

r �11,1r −
m+1∑
n=2

(n−1)�1m,n
0 �1n,0

0

+
2(m−n+1)∑

r=1
�1m,n

r ((n−1)�1n,0
r −�1n,1

r )

]
(47)

am,1
0 =�ma

m−1,1
0 +

2m−1∑
r=0

�1m,1
r �11,1r +

m+1∑
n=2

n�1m,n
0 �1n,0

0 +
2(m−n+1)∑

r=1
�1m,n

r (n�1n,0
r −�1n,1

r ) (48)

am,1
k =�m(1−�k+3−2m)am−1,1

k +
2m−1∑
r=k−1

�1m,1
r �11,kr (1�k�2m) (49)

am,n
k =�m(1−�k+1−2m+2n)a

m−1,n
k −

2(m−n+1)∑
r=k

�1m,n
r �1n,k

r (50)

where

�11,kr = r !(r−k+2)

k! (51)

�1n,k
r = r !

k!(n−1)r−k+1

[
1−

(
1− 1

n

)r−k+1(
1+ r−k+1

n

)]
, n�2,0�k�r (52)

�1m,n
r = h̄1[�2(m−n)−r+2{	a3m−1,n

r −a2m−1,n
r −Ma1m−1,n

r

−Re(1m−1,n
r −2m−1,n

r )}], (1�n�m,0�r�2m−2n+2) (53)

For 
(	) we have the recurrence formulae as:

bm,n
k =�m(1−�k+1−2m+2n)b

m−1,n
k −

2(m−n+1)∑
r=k

�2m,n
r �2n,k

r (54)

bm,1
0 =�m(1−�3−2m)bm−1,1

0 −
2m∑
r=0

�2m,1
r �21,0r (55)

bm,1
k =�m(1−�k+3−2m)bm−1,1

k −
2n∑
r=k

�2m,1
r �21,kr (56)

where

�21,kr = r !(r−k+2)

k! (57)

�2n,k
r = r !

k!(n−1)r−k+1

[
1−

(
1− 1

n

)r−k+1(
1+ r−k+1

n

)]
, n�2,0�k�r (58)
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�2m,n
r = h̄2[�2(m−n)−r+2{	b2m−1,n

r +2b2m−1,n
r

+RePr3m−1,n
r }], (1�n�m,0�r�2m−2n+2) (59)

And the coefficient im,n
r and i=1 to 7 when m�1, 0�n�m+1, 0�r�2(m+1−n) are:

1m,n
r =

m−1∑
k=0

min(n,k+1)∑
j=max(0,n−m+k)

min(q,2(k+1− j))∑
i=min(0,q−2(m−k−n+ j))

a1m−1−k,n− j
r−i a1k, ji (60)

2m,n
r =

m−1∑
k=0

min(n,k+1)∑
j=max(0,n−m+k)

min(q,2(k+1− j))∑
i=min(0,q−2(m−k−n+ j))

am−1−k,n− j
r−i a3k, ji (61)

3m,n
r =

m−1∑
k=0

min(n,k+1)∑
j=max(0,n−m+k)

min(q,2(k+1− j))∑
i=min(0,q−2(m−k−n+ j))

am−1−k,n− j
r−i b1k, ji (62)

where:

a1m,n
k =(k+1)am,n

k+1−n am,n
k (63)

a2m,n
k =(k+1)a1m,n

k −n a1m,n
k (64)

a3m,n
k =(k+1)a2m,n

k+1−n a2m,n
k (65)

b1m,n
k =(k+1)bm,n

k+1−n bm,n
k (66)

Given by the initial guess approximation in Equation (47), the corresponding mth-order approx-
imation of Equations (42)–(43) and (45)–(46) is then given by:

F(	)= lim

(
M∑

m=0
am,0
0 +

M+1∑
n=1

e−n	

(
M∑

m=n−1

2(m+1−n)∑
k=0

	kam,n
k

))
(67)


(	)= lim

(
M∑

m=0
bm,0
0 +

M+1∑
n=1

e−n	

(
M∑

m=n−1

2(m+1−n)∑
k=0

	kbm,n
k

))
(68)

5. CONVERGENCE OF THE HAM SOLUTION

As was mentioned in the introduction, HAM provides us with great freedom in choosing the solution
of a nonlinear problem by different base functions. This has a great effect on the convergence
region because the convergence region and the rate of a series are chiefly determined by the base
functions used to express the solution. Therefore, we can approximate a nonlinear problem more
efficiently by choosing a proper set of base functions and ensure its convergency. On the other
hand, as pointed out by Liao, the convergence and rate of approximation for the HAM solution
strongly depend on the value of the auxiliary parameter. By means of the so-called h̄-curves, it
is easy to find out the so-called valid regions of the auxiliary parameters to gain a convergent
solution series.

The h̄ region for this problem is shown in Figures 2 and 3.
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Figure 2. The h̄-validity curve for f ′′(1), solid curve: 22th-order approximate, dashed curve: 21th-order
approximate and dotted curve: 20th-order approximate when M=0 and Re=10.

Figure 3. The h̄-validity curve for 
′(1), solid curve: 22th-order approximate, dashed curve: 21th-order
approximate and dotted curve: 20th-order approximate when M=0, Re=10 and Pr =0.7.

6. RESULTS AND DISCUSSION

The results are shown in Figures 4–8. These figures show influences of several non-dimensional
parameters, namely the Reynolds number Re, the Prandtl number Pr, and the magnetic
parameter M .
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Figure 4. Velocity profile f ′(	) for various values of M when Re=10.

Figure 5. Temperature profile 
(	) for various values of M and Pr when Re=10.

Figure 4 shows the velocity profiles for various values of the magnetic parameter M when
Re=10. It is noticed that the Prandtl number Pr gives no effect to the velocity as can be seen
from Equation (17). The velocity curves show that the rate of transport is considerably affected
and reduced with the increase of M .

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:548–563
DOI: 10.1002/fld



ANALYTICAL TREATMENT ON MHD FLOW AND HEAT TRANSFER 559

Figure 6. velocity profile f ′(	) for various values of Re when M=0.1.

Figure 7. Temperature profile 
(	) for various values of Re when M=0.1 and Pr =7.

Figure 5 presents the temperature profiles for various values of M and Pr when Re=10.
For both Pr =0.7 (such as air) and Pr =7 (such as water), the temperature is found to increase
as M increases, but it decreases as the distance from the surface increases, and finally vanishes at
some large distance from the surface. The effect of M is found to be more pronounced for fluids
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Figure 8. pressure distribution (p− p∞)/�vc when Re=1.

with smaller Pr since they have a larger thermal diffusivity. Thus, fluids having a smaller Pr are
more sensitive to the magnetic force than those with a larger Pr .

Figures 6 and 7 exhibit the velocity and temperature profiles, respectively, for various values of
the Reynolds number Re. It is observed that both velocity and temperature profiles decrease as Re
increases, which shows similar results as those of Wang [18] for non-magnetic case. It is obvious
that the Reynolds number indicates the relative significance of the inertia effect compared with the
viscous effect. The velocity and temperature vanish at some large distance from the surface of the
tube. From Figure 6, it is clear that the velocity boundary layer thickness decreases as Re increases
which implies an increase in the velocity gradient, and hence increase in the magnitude of the skin
friction coefficient. After velocity f ′(	) is obtained, the pressure P in terms of (P−P∞)/�vc can
be found by using Equation (11). The HAM results are shown in Figure 6 for Re=0.1, 1, and 10.
All the curves show that p→ p∞ is far away from the surface 	→∞.

7. CONCLUSIONS

The similarity solutions to the governing equations of the steady two-dimensional flow of an
electrically conducting incompressible fluid due to a stretching cylindrical tube have been obtained
using HAM. The effects of the magnetic parameter, the Prandtl number, and the Reynolds number
on the flow and heat transfer characteristics have been studied. From this investigation it is
concluded that transverse magnetic field decreases the velocity field, but this is inverse in results
for temperature.

These results are obtained by HAM. This method provides highly accurate numerical solutions
for nonlinear problems in comparison with other methods. The auxiliary parameter h̄ provides us
with a convenient way to adjust and control the convergence and its rate for the solutions series.
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Finally, it has been attempted to show the capabilities and wide-range applications of the HAM of
steady two-dimensional flow of an electrically conducting incompressible fluid due to a stretching
cylindrical tube.

NOMENCLATURE

HAM homotopy analysis method
a radius of cylinder
B0 uniform magnetic field
c positive constant
C f skin friction coefficient
f dimensionless stream function
k thermal conductivity
M magnetic parameter
Nu Nusselt number
P pressure
Pr Prandtl number
qw heat transfer from the cylinder surface
Re Reynolds number
T fluid temperature
Tw temperature of the cylinder surface
T� ambient temperature
u,w velocity component in the r , z directions
r, z cylindrical coordinate in the radial and axial direction
ww velocity of the stretching cylinder
� thermal diffusivity
	 similarity variable

 dimensionless temperature
� dynamic viscosity
� kinematic viscosity
� fluid density
� electrical conductivity
� stream function
�w skin friction
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